Introduction to

& python

Martin Maly
Struktura 2024

Introduction to fg_fj pgthon

Ahoj!

RRSERMBN by e TR S M N s

’m R e S B T —
s m-.a\.—.:»;h;“ M"‘:}“‘" 1 s b
e e e T A e @.:‘"‘;{a‘%m

TRCTR WA 5 1 h Mre h com ien g
N — s S—

VUM kb e UMD s sl s e i
e g e b

Aok b d e
OB bl
e

r 1 . SO
What's your name? — ’_,,

iee

What’'s your field of science?

Have you coded before?
What do you like?

Introduction to @ pgthon

Acknowledgement

* University of Southampton %‘; ’ ccp4
* CCP4

Integrated suite of programs for macromolecular crystallography

Open.td

rsity of Edinburgh

University of

Southampton

* Slides mostly from the Open Educational Resources,
University of Edinburgh
https://open.ed.ac.uk/introduction_to_python/
Creative Commons Attribution 4.0 International License

@ puthon

https://open.ed.ac.uk/introduction_to_python/

Content Stop me and ask!

* Why Python

* First code

* Variables and their types

* Arithmetic and comparison operators

* if elif else

* Lists

+ for and while loops Many little exercises
* Definition of functions during our SeSSiOn

* NumPy and Flex arrays
* sys module

@ puthon

Why to use Python in science?

python

* Programming automation and pipelines - can save your time

* Now one of the most important languages for:
* Data science
* Machine learning
* General software development

* More powerful alternative for MS Excel

* Libraries: CCTBX, GEMMI, Coot headless API (CHAPI),
NumPy, Pandas, MatPlotLib, SciPy, scikit-learn, statsmodels...

Hold your
~ breath...

Crystallographic restriction theorem

The rotational symmetries of a crystal are (usually) limited to
2-fold, 3-fold, 4-fold, and 6-fold.

27

2acosf = 2a cos —.
n

Equating the two relations gives:

2T
2c08— =m
n

This is satisfied by only n=1, 2, 3, 4, 6.

* https://en.wikipedia.org/wiki/Crystallographic_restriction_theorem

r» vV oo B & 1)
© import math -

def check symmetry(maximum) :
result = []
for i in range(maximum):
it 1 ==
print("It does not have sense to test the 0-fold symmetry.")
continue # continue with the next i

else: 271-
value = 2 * math.cos(2 * math.pi / 1) 2008 — = m

if math.isclose(value, round(value), abs tol=0.001): # if value is an integer n
print(str(i) + "-fold symmetry is possible.")
result.append(i)
else:
print(str(i) + "-fold symmetry is not possible.")
print("Result: possible symmetry:")
print(result)
return result

check symmetry(10)

=v It does not have sense to test the O0-fold symmetry.
1-fold symmetry is possible.
2-fold symmetry is possible.
3-fold symmetry is possible.
4-fold symmetry is possible.
5-fold symmetry is not possible.
6-fold symmetry is possible.
7-fold symmetry is not possible.
8-fold symmetry is not possible.
9-fold symmetry is not possible.
Result: possible symmetry:
[1.'2_ 3. 4. 6]
[1, 2, 3, 4, 6]

© import math

d

def check symmetry(maximum):
result = []
for i in range(maximum):

if 1 ==

@ B & [

print("It does not have sense to test the 0-fold symmetry.")

continue # continue with the next 1

else:

value = 2 * math.cos(2 * math.pi / 1)
if math.isclose(value, round(value), abs tol=0.001):
print(str(i) + "-fold symmetry is possible.")

result.append(i)

else:

print(str(i) + "-fold symmetry is not possible.")
print("Result: possible symmetry:")

print(result)
return result

check symmetry(10)

It does not have sense to test the 0-fold symmetry.

1-fold
2-fold
3-fold
4-fold
5-fold
6-fold
7-fold
g-fold
9-fold

Result:

[1, 2,
L1, 2,

symmetry
symmetry
symmetry
symmetry
symmetry
symmetry
symmetry
symmetry
symmetry

is
is
is
1s
15
is
is
1s
is

possible.
possible.
possible.
possible.

not possible.

possible.

not possible.
not possible.
not possible.

possible symmetry:

3. 4, B8]
3, 4, 6]

What can we see?
Import of a library
Definition of a function
Indentation

Square brackets... a list
Variable

if value is an integer

2
2 cos Ll
n

for loop

O is the 15t number

if and else clause
Comparing ==

print()

Comment

Function from a library
Function parameters
Data types

Calling a function

"

How to install and run Python?

* Google Colab - no need to install, our solution for today!
https://colab.research.google.com
Run a cell with a code using a “play” button or Ctrl+Enter

v o B QR
print("Hello!")

Hello!

* Another option: Download and install Python
https://www.python.org/downloads
(not necessary for our session today)

1. IPython - Python can be run interactively
2. Python scripts - Then we must write text files in .py

https://colab.research.google.com/
https://www.python.org/downloads

Variables

* Let’s define a variable
* Later it can be called by the variable name
* Variable names are case sensitive and unique

distanceToLondonMiles = 463

mileToKm = 1.60934

distanceToLondonKm = distanceToLondonMiles * mileToKm
distanceToLondonKm

648.56402

Variables

* Let’s define a variables
* Later it can be called by the variable name

* Variable names are case sensitive and unique

distanceToLondonMiles = 463

mileToKm = 1.60934
distanceToLondonkKm = distanceToLondonMiles * mileToKm

distanceToLondonkKm

648.56402

We can now reuse the variable mileToKm in the next block without having to define it again!
marathonDistanceMiles = 26.219

marathonDistanceKm = marathonDistanceMiles * mileToKm
print({marathonDistancekm)

42.19528546

Printing

* When writing scripts, your outcomes aren't printed on the terminal.
* Thus, you must print them yourself with the print() function.
* Beware to not mix up the different type of variables!

print("Python is powerful!")
Python is powerful!
X = "Python is powerful”

y = " and versatile!"
print(x + y)

Python is powerful and versatile!

@ puthon

iDNES.cz

ZPRAVY > KRAJE > HRADEC KRALOVE

Ta S k f() I y() U Cesko postihne silny vitr. Snézku zasahl orkan o
rychlosti 124 kilometru za hodinu

(D 9. bifezna 2024 9:53, aktualizovdno 12:51 O X ™ @

Convert a wind speed 124 km/h to m/s.
3.6 km/h=1m/s

iDNES.cz

ZPRAVY > KRAJE > HRADEC KRALOVE

Task for you Cesko postihne silny vitr. Snézku zasahl orkan o
rychlosti 124 kilometrﬁ za hodinu
) 9. bfezna 2024 9:53, aktualizovano 12:51 0O X & @

Convert a wind speed 124 km/ h to m/s

3.6 km/h=1m/s

* Define a variable speed kmperhour

* Calculate the converted speed in a variable speed mpers
* Show the result using print (speed mpers)

@ puthon

iDNES.cz

ZPRAVY > KRAJE > HRADEC KRALOVE

Task for you Cesko postihne silny vitr. Snézku zasahl orkan o
rychlosti 124 kilometrﬁ za hodinu
) 9. bfezna 2024 9:53, aktualizovano 12:51 0O X & @

Convert a wind speed 124 km/ h to m/s

3.6 km/h=1m/s

* Define a variable speed kmperhour

* Calculate the converted speed in a variable speed mpers
* Show the result using print (speed mpers)

© speed kmperhour = 124
speed mpers =

@ puthon

iDNES.cz

ZPRAVY > KRAJE > HRADEC KRALOVE

Task for you Cesko postihne silny vitr. Snézku zasahl orkan o
rychlosti 124 kilometrﬁ za hodinu
) 9. bfezna 2024 9:53, aktualizovano 12:51 0O X & @

Convert a wind speed 124 km/ h to m/s

3.6 km/h=1m/s

* Define a variable speed kmperhour

* Calculate the converted speed in a variable speed mpers
* Show the result using print (speed mpers)

¥ @ speed kmperhour = 124
speed mpers = 124 / 3.6
print(speed mpers)

—

v 34.44444444444444

=
@ puthon

Types

Variables actually have a type, which defines the way it is stored.
The basic types are:

Type Declaration Example Usage
Integer int ¥ = 124 Numbers without decimal point
Float float ¥ = 124.56 Mumbers with decimcal point
String str X = "Hello world" Used for text
Boolean bool X = True or ¥ = False Used for conditional statements
NoneType None ¥ = None Whenever you want an empty variable

@ puthon

In [4]: x = 10 # This 1s an integer

"20" # This 15 a string

TypeError Traceback (most recent call 1

ast)
<ipython-input-4-f1463b8bdcle> in =module=()
1l x =10 # This is an integer
2y = "20" # This 1s a string
----> 3 X+ Y

TypeError: unsupported operand type(s) for +: 'int' and ‘str

Important lesson to remember!
We can't do arithmetic operations on variables of different types. Therefore make sure

that you are always aware of your variables types!

You can find the type of a variable using type(). For example type type(x).

Casting types

Luckily Python offers us a way of converting variables to different types!
Casting - the operation of converting a variable to a different type

X = 10 # This 1s an iInteger
y = "20" # This 1s a string

X + int(y)

30

Similar methods exist for other
data types: int(), float(), str()

print(str(1) + "-fold symmetry 1is possible.")

@ puthon

Another more generic way to fix it

strl = "It has"

str2 = 76

str3 = "methods!"
print(strl, str2, str3)

It has 76 methods!

If we comma separate statements in a print function we can
have different variables printing!

@ puthon

Arithmetic operations

Symbol Task Performed Example Result

Similar to actual Mathematics.

‘ + Addition 4+3 7

Order of precedence is the same as |
. . - Subtraction 4-3 1

in Mathematics.
/ Division 712 D
. o 0

We can also use parenthesis () & Mod %2 1
* Multiplication 4*3 12
/1 Floor division 712 3
= Power of 7% 2 49

@ puthon

Comparison operators

* Return Boolean values Operator Output
(i.e. True or False)

X==y True If x and y have the same value
* Used extensively for

o 0 . 1= . '
conditional statements (if) x!=y Trueif x and y don't have the same value

X<y True if x is less than y
X>y True iIf x iIs more than y
X<=y True if X is less than or equal to y
X>=y True If x iIs more than or equal to y

@ puthon

Comparison operators

* Return Boolean values Operator Output
(i.e. True or False)

X==y True If x and y have the same value
* Used extensively for

o 0 . 1= . '
conditional statements (if) x!=y Trueif x and y don't have the same value

i X<y True if x is less than y
if 1 == 0:
print("It does not have sense to test the ©-fold symmetry.") . .
continue # continue with the next i X > y’ TrLIE |fj{ IS mMore thEln y’
else:
value = 2 * math.cos(2 * math.pi / 1) .)
if math.isclose(value, round(value), abs tol=0.001): # if value is X<=y True if X is less than or equal to y

print(str(i) + "-fold symmetry is possible.")
result.append(1i)

else: X>=y True if x is more than or equal to y

print(str(i) + "-fold symmetry is not possible.")

@ puthon

LO g i C a I O p e ra tO rS Operation Result

xory Trueif at least on is True

* Allows us to extend the conditional logic xandy True only if both are True
* Will become essential later on notx Trueonlyifxis False
a not a a b a and b aorhb
False True False False False False
True False False True False Trua
True False False True
True Trua True True

Truth-table defimitions of bool operations

Strings

X = "Python"
y = "rocks"
x + L1 L1 + -yr

'Python rocks'

Multiline strings

X = """To include

multiple lines

you have to do this"""

y ="or you can also\ninclude the special\ncharacter "\\n between lines"
print({x)

print(y)

4 k

To include

multiple lines

you have to do this

or you can also

include the special
character "\n" between lines

If elif else

* Fundamental building block of software

print("Let's divide two values")
nom = 2

elif denom ==
print("Division by one is possible but quite useless...")
print(“"The result is " + str(nom))
else:
result = nom / denom
print("The result is " + str(result))

Indentation matters!

* Code is grouped by its indentation
* Indentation is the number of whitespace or tab characters before the code.

* If you put code in the wrong block then you will get unexpected behaviour

x = 18

!) |)
print(’ Gutput ﬂnly when x is d1x151b1e by 2 but not divisible by 5.°

print(x, 1is ogd. } |

print{ No indentatlon. Output 1in a cases.

16 is even!

18 is divisible by 5!

Output only when x is divisible by both 2 and 5.
No indentation. Output in all cases.

Task for you

Let’s define a variable age .
Write an if-elif-else clause depending on the age :
* Ifthe age isbelow 18, print “Beer not allowed”.

* Ifthe age isabove 18 (inclusively) and below 21,
print “Beer allowed in Czechia but not in America”.

* Ifthe age isabove 21 (inclusively), print “Beer allowed”.

Lists

* One of the most useful concepts
* Group multiple variables together (a kind of container!)

fruits = ["apple", "orange", "tomato", "banana"] # a list of strings
print(type({fruits))
print{fruits)

=<class 'list'=
['apple', 'orange', 'tomato', 'banana’]

Indexing a list

* Indexing - accessing items within a data structure

fruits[2]

'tomato’

* Indexing a list is not very intuitive...
* The first element of a list has an index O

Index: 0 1 2 3

List: apple orange tomato banana

@ puthon

Quick quiz

What will fruits[3] return?

fruits = ["apple", "orange", "tomato", "banana"] # a list of strings
print(type({fruits))
print{fruits)

=<class 'list'=
['apple', 'orange', "tomato', 'banana’]

s @ tomato really a fruit?

fruits[2] = "apricot"
print(fruits)

['apple', 'orange', 'apricot', 'banana']

Furthermore, we can modify lists in various ways

fruits.append("lime") # add new iftem to list
print(fruits)

fruits.remove("orange") # remove orange from list
print({fruits)

['apple’', 'orange', 'apricot', 'banana', 'lime']
['apple', 'apricot', 'banana', 'lime']

@ puthon

Lists with integers

range() - a function that generates a sequence of numbers as a list

nums = list(range(10))
print{nums)

(e, 1, 2, 3, 4, 5, 6, 7, 8, 9]

nums = list(range(®, 100, 5))
print{nums)

[@, 5, 10, 15, 20, 25, 30, 35, 40, 45, 58, 55, 60, 65, 70, 75, 80, 85,
90, 95]

Slicing lists

* Slicing - obtain a particular set of sub-elements from a data structure.
* Very useful and flexible.

print({nums)

print{nums[1:5:2]) # Get from item 1{starting point) through item 5(end point, not included) with step size 2
print(nums[@©:3]) # Get items 8 through 3(not included)

print(nums[4:]) # Get items 4 onwards

print(nums[-1]) # Get the Llast item

print(nums[::-1]) # Get the whole List backwards

[6, 5, 18, 15, 2@, 25, 3@, 35, 48, 45, 58, 55, 60, 65, 78, 75, 80, 85, 9@, 95]
[5, 15]

[0, 5, 10]

[20, 25, 3@, 35, 48, 45, 5@, 55, 6@, 65, 78, 75, 80, 85, 9@, 95]

05

[95, 9@, 85, 8@, 75, 7@, 65, 68, 55, 5@, 45, 48, 35, 38, 25, 28, 15, 1@, 5, 0]

Lists - helpful functions

* Makes them extremely useful and versatile

nums = list(range(0, 100, 5))

print(nums)

print(len(nums)) # number of items within the list
print(max(nums)) # the maximum value within the list
print(min(nums)) # the minimum value within the list
print(sum(nums)) # sum of the values

print(sum(nums) / len(nums)) # the average value

9, 5, 48, 15, ‘26, 25, .38, 35, 49, 45, 56, 55, B9, 65, 78, 75. B&, 85, 90, 951
20

95

0
950
47.5

keys \ values
D " t " x Monday > Diluain
Tuesday > Dimairt
* Similar to actual dictionaries
° ° ° w d d »* D‘ " d 1
* They are effectively 2 lists combined - ey clacamn
keys and values
Thursd > Diardaoi
* We use the keys to access the values e ardaom
instead of indexing them like a list
. . Friday > Dihaoine
* Each value is mapped to a unique key

days = {"Monday": "Diluain", "Tuesday": "Dimairt",
"Wednesday": "Diciadain", "Thursday": "Diardaoin",
"Friday": "Dihaoine"}
print(type(days))
print(days)
<class 'dict'=>
{"Monday': 'Diluain', 'Tuesday': 'Dimairt', 'Wednesday': 'Diciadain',
'Thursday': 'Diardaoin', 'Friday': 'Dihaoine'}

@ puthon

Accessing a dictionary

Values are accessed by their keys (just like a dictionary)
Note that they can't be indexed like a list

days["Friday"]

'Dihaoine’

It is possible to obtain only the keys or values of a dictionary.
This is useful for iteration.

print({days.keys()) # get only the keys of the dictionary
print(days.values()) # get only the values of the dictionary

dict keys(['Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'])
dict values(['Dimairt', 'Diciadain', 'Diardaoin‘', 'Dihacine’, 'Disathai
rne'])

@ puthon

For loop

* Say we want to go over a list and print each item along with its index

fruits = ["apple”, "orange”, "tomato", "banana"]

print("The fruit”, fruits[@], "has index", ftruits.index(fruits
print("The fruit"”, fruits[1], "has index", fruits.index(fruits
print("The fruit”, fruits[2], "has index", fruits.index(fruits
print("The fruit"”, fruits[3], "has index", fruits.index(fruits

The fruit apple has index @
The fruit orange has index 1
The fruit tomato has index 2
The fruit banana has index 3

* What if we have much more than 4 items in the list, say, 10007?

@ puthon

For loop - example

* Now with a for loop

fruitList = ["apple”, "orange", "tomato", "banana"]
for fruit in fruitlList:
print("The fruit", fruit, "has index", fruitList.index(fruit))

The fruit apple has index @
The fruit orange has index 1
The fruit tomato has index 2
The fruit banana has index 3

* Saves us writing more lines
* Doesn't limit us in term of size
* Indentation

Task for you

Define a list of strings - your favourite food.
For each food, print “I like food”.

While loop

* Another useful loop. Similar to the for loop.

* A while loop doesn't run for a predefined number of iterations, like a for
loop. Instead, it stops as soon as a given condition becomes true/false.

n==a

while n < 5;
print("Executing while loop")
n=n+s1

print("Finished while loop")

Executing while loop
Executing while loop
Executing while loop
Executing while loop
Executing while loop
Finished while loop

@ puthon

Task for you

Write a code to calculate factorial of 5.
Use a for loop orawhille loop.
51=5*4*3*2*1=120

Task for you

Write a code to calculate factorial of 5.
Use a for loop orawhille loop.
51=5*4*3*2*1=120

fac = 1 fac = 1
for 1 in range(5): i=1
fac = fac * (1 + 1) while 1 < 5:
print(fac) fac = fac * (1 + 1)
1 =1 +1
120 print(fac)
120

Function declaration

* For a code which is used multiple times

* Make code modular and readable

* Functions accept arguments and execute a piece of code
* Often they also return values (the result of their code)

keyword

unctiunhlame argumentl

statments..

Any number of arguments

return returnValue \
[Optional] Exits the function and returns some value

Function examples

def printNum(num): def convert speed(speed kmperhour):
print("My favourite number is", num) speed mpers = speed kmperhour / 3.6
i print(speed mpers)
pr}ntmum{?} return speeE mpers
printNum(14) -
printNum(2)
speedl converted = convert speed(124)
My favourite number is 7 speed2 converted = convert speed(50)
My favourite number is 14 speed3 converted = convert speed(90)
My favourite number 1s 2 speed4 converted = convert speed(130)

34.44444444444444
13.88888888888889
25.0

36.11111111111111

Task for you

Write a function to calculate a factorial
and call it to calculate 5!.

Task for you

Write a function to calculate a factorial
and call it to calculate 5!.

def factorial(n):
. # your code

factorial(5)
120

Task for you

Write a function to calculate a factorial
and call it to calculate 5!.
def factorial(n):
fac = 1
for i in range(n):
fac = fac * (1 + 1)
print(fac)
return fac

factorial(5)

120

Task for you - merging intensities

Imagine that you measured an intensity of the reflection (523)
From 3 different diffraction images, you measured 3 different values:
]523,1 — 2055, [523,2 — 1866,]523,3 =2214

Write a list of the measured intensities,
calculate an average value /5,; and multiply it by 10.

@ puthon

Task for you - merging intensities

Imagine that you measured an intensity of the reflection (523)
From 3 different diffraction images, you measured 3 different values:
[523,1 — 2055, [523,2 — 1866,]523,3 =2214

Write a list of the measured intensities,
calculate an average value /5,; and multiply it by 10.

Calculate a square root of the average intensity.
You will need to add this line in the beginning: 1mport math
So you can use the function math.sqrt() inyour code.

You will get a merged and scaled amplitude of structure factor [Fss| :-)

NumPy array, Flex array - cool list

* Array with a defined data type.
* Operations can be applied directly for all the elements of an array.
* Can have multidimensional structure.

* Faster calculations. mssr scitbx.array family import flex
>>> int array = flex.int([3,1,2,6,8,2,6,3,4])
>>> double array = flex.double([(1.5,2,3), (4,5,6)1])
>>> print(double array)
<scitbx array family flex ext.double object at 0x7f05f76bec20>
>>> list(double array)
[1.5, 2.0, 3.0, 4.0, 5.0, 6.0]
>>> double array2 = double array + 5

>>> list(double array2)
[6.5, 7.0, 8.0, 9.0, 10.0, 11.0]
>>> double array2.nd()
2
>>> double array2.all()

s >>>

sys - system module

* Standardinput: sys.stdin
* Standard output: sys.stdout
* Standard error output: sys.stderr

import sys

sys.stdout.write("Let's divide two values\n")

nom = 2

denom = 0

if denom ==
sys.stderr.write("ERROR: Division by zero\n")
sys.exit(1l)

result = nom / denom

sys.stdout.write("The result is " + str(result) + "\n")

Let's divide two values

ERROR: Division by zero
An exception has occurred, use %tb to see the full traceback.

SystemExit: 1

Passing input argument(s) to script

Python script file: greet.py
import sys

def greet(name):
print(“"Hello " + str(name))

if (__name == " main_ "):
greet(sys.argv[l])

Let’s execute the script and specify an argument

martin@precision: $ python3 greet.py Petr

The file name of this script 1s greet.py
Hello Petr

@ puthon

